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SUMMARY 

Numerical models for groundwater flow and transport on a regional scale require the 
assignment of hydraulic parameters to grid blocks of a size larger than typical scales of 
available field data.  Most natural formations are heterogeneous with hydraulic properties 
varying on a multiplicity of scales.  This difference in scales is often handled by using effective 
(upscaled) parameters. Here we investigate the problem of upscaling hydraulic conductivity 
and transmissivity from the small scale of measurement to the larger scale of a grid block by 
means of stochastic averaging and perturbation analysis.  We start by deriving the statistics of a 
random transmissivity field from that of a conductivity field, and proceed by establishing the 
relationship between effective conductivity and transmissivity derived from the same data set.  

1. INTRODUCTION  

Models for interpreting experimental data usually assume that, at least on a measurement scale, 
flow takes place in a homogeneous environment.  Under this assumption, hydraulic 
conductivity K(x) represents a quantity averaged over some support volume ω1 centered 
around point x.  If the support volume ω1 is comparable to an aquifer thickness, B, then the 
trasmissivity associated with this support volume is defined as B K.  However, K is usually 
associated with much smaller measurement volumes, and local transmissivity of heterogeneous 
formations is defined as a vertical average, 
 

T = ∫
B

dxK
0 3 .  (1) 

 
Effective, or up-scaled, parameters are often used for numerical modeling of groundwater flow 
and transport in heterogeneous aquifers.  Such models require assigning hydraulic 
conductivities or transmissivities to large grid-blocks, while experimental data are usually 
available at a much smaller scale of core or well­log measurements.  These parameters can be 
obtained by standard inverse methods [1] or, alternatively, by stochastic averaging of the 
corresponding flow equations [2, 3].  In this paper we pursue the latter strategy.  
 
We establish the relationship between effective (up-scaled) hydraulic conductivity, Keff, and 
transmissivity, Teff, for randomly heterogeneous confined formations.  We show that, when T 
and K are defined on different support scales, the traditional definition of effective 
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transmissivity, Teff ≡ B Keff, fails unless a medium is mildly heterogeneous and exhibits a lack 
of the vertical spatial correlation.  To simplify the mathematical developments, we consider 
steady-state flow in the vertical cross-section (x1, x3).  Generalizing the obtained results to 
transient flow scenarios can be readily accomplished by following Tartakovsky and Neuman 
[4]. 
 
2. TRANSMISSIVITY STATISTICS 

Following standard practice in stochastic hydrogeology [5 - 7], we assume that log hydraulic 
conductivity Y(x) = ln K(x) forms a statistically homogeneous Gaussian field with constant 
mean 〈Y〉 and variance 2

Yσ  = 〈Y’(x) Y’(x)〉, and two­point Gaussian anisotropic covariance 
function, CY (x; y) = 2

Yσ  ρY(r)  
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where lh and lv are the horizontal and vertical correlation scales, respectively.  Our aim is to 
express the transmissivity statistics in terms of the statistics of Y. 
 
It follows from (1) that ensemble mean transmissivity, 〈T〉, is given exactly by 
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where KG = exp(〈K〉) is the geometric mean of K; and the first-order (in 2

Yσ ) approximation of 
its covariance has the form, 
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Substituting (2) into (3) yields 
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where ρT(rh) = exp (− 2

hr ), 2
hr  = (x1 – y1)2 / 2

hl , and 
 

1exp
),(

2

2

2 −







−+








π=

α

vvvv

v

l
B

l
B

erf
l
B

l
Bl

.  

 
In a similar manner, one has the following first­order (in 2

Yσ ) approximations of mean log 
transmissivity 〈Z〉, geometric mean TG = exp(〈Z〉), variance 2

Zσ , and correlation function ρZ, 
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〈Z〉 = ln (B KG) + (1 − β) 
2
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respectively.  Here  
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and λv = lv / B. 
 
Thus constructed random field of log transmissivity, Z, is dependent upon a number, λv, of the 
vertical correlation scales, lv, in the total width, B, of an aquifer.  This dependence manifests 
itself through the correction factor β(λv).  Since β  < 1, it follows from (5) that the log 
transmissivity Z, as inferred from the given statistics of the log conductivity Y, exhibits smaller 
spatial variation than Y.  A lack of the vertical correlation of hydraulic conductivity (lv = 0) 
results in 02 =σZ . 
 
It is clear that if T is defined on a support volume ω2 through the spatial averaging (1) of K 
(associated with a smaller scale ω1), log­normality of K does not imply log­normality of T.  
Alternatively, if transmissivity and conductivity are defined on the same support scale, then 
T = BK and log­normality of K also implies log­normality of T. 
 
3. EFFECTIVE TRANSMISSIVITY AND CONDUCTIVITY 

Consider up­scaling of Darcy's law, q = − K ∇h (q being flux and h being hydraulic head), 
from its support scale ω1, to a larger grid-block, Ω, of length L and width B.  Constant heads H1 
and H2 are prescribed at the boundaries x1 = 0 and x1 = L, respectively; while boundaries x2 = 0 
and x2 = B are impermeable.  Under these conditions, the first-order approximation of the 
effective conductivity, Keff, for the two-dimensional heterogeneous grid­block, Ω, is given by 
[2]  
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where G is the Green's function for the two­dimensional Laplace equation in Ω subject to 
appropriate homogeneous boundary conditions.  This expression has been studied by 
Paleologos et al. [2] and Tartakovsky and Neuman [3].  These authors have demonstrated that 
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when the size of the domain is much larger than the correlation scales of the log-hydraulic 
conductivity (lh, lv << L, B), one can treat the flow domain as infinite, which leads to Keff = KG. 
 
For two-dimensional flow in a vertical cross-section, defining effective transmissivity, Teff, in a 
similar manner leads to  
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where the one-dimensional GT is given by 
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where H(a) = 1 when a ≥ 0 (and = 0 otherwise) is the Heaviside function.   
 
Substituting (5) and (7) into (6) yields 
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where λh = lh / L and χ = x1 / L.  Thus, similar to the effective hydraulic conductivity, the 
effective transmissivity is a function of space.  Figure 1 shows the dependence of b on the 
normalized space coordinate χ for several values of λh. 
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Figure 1: dependence of b on the normalized space coordinate χ for several values of λh. 

u λh = 0.1 o λh = 0.3 

n λh = 0.5 ∆ λh = 0.9 

χ = x1 / L 

b(
χ)

 



 5

 
The spatial variation of the effective transmissivity increases with λh.  When λh < 0.1, 
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Substituting (4) and (5) into (8) yields, up to first order in 2

Yσ , 
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Therefore, the traditional practice of setting Teff = B Keff holds true if and only if aquifers are 
nearly homogeneous ( 2

Yσ  << 1) and the vertical correlation scale of log-hydraulic conductivity 
is much smaller than the confined aquifer’s thickness (λv << 1). 
 
CONCLUSIONS 
 
Numerical models of groundwater flow and transport often assign effective (upscaled) 
hydraulic parameters to grid blocks of a size larger than that of available field data.  To derive 
such parameters, we treated hydraulic conductivity and transmissivity as log normal and 
stationary random fields.  Starting from the premise that the hydraulic conductivity statistics 
are known from experimental data, we derived a relationship between the effective hydraulic 
conductivity Keff and transmissivity Teff for a grid block of a confined aquifer.  Mean uniform 
flow conditions were imposed.  This relationship demonstrates that the traditional practice of 
setting Teff = BKeff (B being the aquifer thickness) is valid only under restrictive conditions of 
mildly heterogeneous formations with vertical correlation scale, lv, of log hydraulic 
conductivity much smaller than the thickness of a confined aquifer (lv / B < 0.1). 
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